GPS inside your body

Medical processes like imaging often require cutting someone open or making them swallow huge tubes with cameras on them. But what if could get the same results with methods that are less expensive, invasive and time-consuming?
Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) are working on exactly that with ReMix, a system that they describe as an “in-body GPS.” ReMix can pinpoint the location of ingestible implants inside the body using low-power wireless signals. In animal tests the team demonstrated that they can track implants with centimeter-level accuracy, and said that one day similar implants could be used to deliver drugs to specific regions in the body.
To track its movement, they used a wireless device that reflects radio signals at the patient, and a special algorithm to pinpoint the exact location of the marker. The team used a wireless technology that they’ve previously demonstrated to detect heart rate, breathing and movement. Interestingly, the marker inside the body does not need to transmit any wireless signal. It simply reflects the signal transmitted by a device outside the body, without needing a battery or any other external source of energy.
Its success hinges on something that’s actually quite unreliable: a tumor staying exactly where it is during the radiation process. If a tumor moves, then healthy areas could be exposed to the radiation. But with a small marker like ReMix’s, doctors could better determine the location of a tumor in real-time, and be able to either pause the treatment or steer the beam into the right position to deal with the movement. (To be clear, ReMix is not yet accurate enough to be used in clinical settings — Katabi says a margin of error closer to a couple of millimeters would be necessary for actual implementation.)
[soo-youtube-embed]
There are still many challenges ahead for improving ReMix. The team next hopes to combine the wireless data with medical information like MRI scans to further improve the system’s accuracy. In addition, the team will continue to reassess the algorithm and the various trade-offs needed to account for the complexity of different peoples’ bodies.
ReMix was developed in collaboration with researchers from Massachusetts General Hospital (MGH). The team says that such systems could help enable more widespread adoption of proton therapy centers, of which there are only about 100 globally.

Post Author: admin

Leave a Reply

Your email address will not be published.